Tough photoluminescent hydrogels doped with lanthanide.

نویسندگان

  • Mei Xiang Wang
  • Can Hui Yang
  • Zhen Qi Liu
  • Jinxiong Zhou
  • Feng Xu
  • Zhigang Suo
  • Jian Hai Yang
  • Yong Mei Chen
چکیده

Photoluminescent hydrogels have emerged as novel soft materials with potential applications in many fields. Although many photoluminescent hydrogels have been fabricated, their scope of usage has been severely limited by their poor mechanical performance. Here, a facile strategy is reported for preparing lanthanide (Ln)-alginate/polyacrylamide (PAAm) hydrogels with both high toughness and photoluminescence, which has been achieved by doping Ln(3+) ions (Ln = Eu, Tb, Eu/Tb) into alginate/PAAm hydrogel networks, where Ln(3+) ions serve as both photoluminescent emitters and physical cross-linkers. The resulting hydrogels exhibit versatile advantages including excellent mechanical properties (∼ MPa strength, ≈ 20 tensile strains, ≈ 10(4) kJ m(-3) energy dissipation), good photoluminescent performance, tunable emission color, excellent processability, and cytocompatibility. The developed tough photoluminescent hydrogels hold great promises for expanding the usage scope of hydrogels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lanthanide-containing photoluminescent materials: from hybrid hydrogel to inorganic nanotubes.

Functional photoluminescent materials are emerging as a fascinating subject with versatile applicability. In this work, luminescent organic-inorganic hybrid hydrogels are facilely designed through supramolecular self-assembly of sodium cholate, and lanthanide ions such as Eu(3+), Tb(3+), and Eu(3+)/Tb(3+). Fluorescence microscopy and TEM visualization demonstrates the existence of spontaneously...

متن کامل

Photoluminescent Lanthanide-Doped Silica Nanotubes: Sol Gel Transcription from Functional Template

’ INTRODUCTION Since the discovery of carbon nanotubes, hollow nanotubes have attracted considerable attention due to their functional significance and potential applications in nanoscale devices, sensors, and energy storage/conversion. In particular, silica nanotubes raise special interest because of their biocompatibility, confined environment as nanocontainers, and feasibility of chemical mo...

متن کامل

Highly Stretchable, Strain Sensing Hydrogel Optical Fibers.

A core-clad fiber made of elastic, tough hydrogels is highly stretchable while guiding light. Fluorescent dyes are easily doped into the hydrogel fiber by diffusion. When stretched, the transmission spectrum of the fiber is altered, enabling the strain to be measured and also its location.

متن کامل

Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks.

As swollen polymer networks in water, hydrogels are usually brittle. However, hydrogels with high toughness play critical roles in many plant and animal tissues as well as in diverse engineering applications. Here we review the intrinsic mechanisms of a wide variety of tough hydrogels developed over the past few decades. We show that tough hydrogels generally possess mechanisms to dissipate sub...

متن کامل

Versatile Molding Process for Tough Cellulose Hydrogel Materials

Shape-persistent and tough cellulose hydrogels were fabricated by a stepwise solvent exchange from a homogeneous ionic liquid solution of cellulose exposure to methanol vapor. The cellulose hydrogels maintain their shapes under changing temperature, pH, and solvents. The micrometer-scale patterns on the mold were precisely transferred onto the surface of cellulose hydrogels. We also succeeded i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Macromolecular rapid communications

دوره 36 5  شماره 

صفحات  -

تاریخ انتشار 2015